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INTRODUCTION TO VOLUME II

This volume consists of a series of appendices whose contents could

not be included in the body of the report without breaking the continuity.

The appendices describe topics that were studied during the course of the

current contract but are only tangentially related to the theme of Volume

1. Several references were made in Volume I to appendices in this volume

for the details of specific methods.

The notation introduced in each appendix applies only to that appendii

unless othcrwise noted.
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APPENDIX A

THE METHOD OF ITERATIVE GENERALIZED LEAST SQUARE

In Prony's method we have the difference equation

N
p-0 •p I?+K-0,K-0,,.,-(A

7 IM-N

This is usually solved as an inhomogeneous equation

N-i
.I -I , K 0,1,...:7-l (A.2)
OP T+K -N+K

where cN was set to one.

However we do not know the I 'a exactly. The measurements of the I 's are YK¶ sK K Kan

YK "I +ea (A.3)
K K K

where eK is the error in the Kth spl.

Hence,

N NN ap (A.4)

~ p ~p+K p p+

Rewriting the above give.

N-i N
P-0 •p YP+K" "YN+K +p0 •p "p+K (A.5)

Ni
Letting wl ;I:K W A (A.6)

I" A-1



then

N-I
aY -Y (AW7

i:0O P+' N+K +~ (A.C

The WK are the residuals but from (A.0) the residuals are correlated and a

least squares solution to (A.6) will give biased estimates.

Wh.n we use leant squares to minimize the residuals by

__ 2
Sa , (A.8)

o -K

we obtain the final expression NKmO..- A9

p- iP:0 Yp+K m+K N+-o X ÷ Ym-", M-OO,. ... ,N-i (A.9)
'L" iI

We will get biased estimates for the ap.

One way to correct this is to use a method known as iterative

generalized least squares. Rewrite (A.7) as

N •pY -w , -l,.,- (A.8) !

Now define new notation for the sake of convenience. First introduce the shift

operator q defined so that

qK "K+l ]

K2 (A.9)
Kf ~K+2

The polynomial operator A(q) is defined as

N NA(q) 2 m a am qm (A.10O)

muoo
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Nbw (A.8) can be written as

A(q) Y "WK let c -a . (A.11)

In matrix form (A.8) is

yo0 Y 1  Y 2  0 W

Y Y Y C Wi

Y2 Y3 Y4 22
Y3 Y4 Y5

and (A.11) is

q0Y0 q Y 0 q WY a

0 1. 2yq0Y1  qlY1  q 1  W

qOY qly2 qy2 W2

2 2 2 q

q Y3  qlY3  q2 Y3 W

Now let us operate on WK with the polynomial filter

B(q) WK - ,n (A.12)

to give nK which is an uncorrelated noise sequence (random variables) ao that

B(q) A(q) YK- n .

Let A commute with B so that

U A(q) B(q) YK" nK (A.13)

A-3
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-• and define

, - B(q) YK (A.14)

so th,,

A(q) YK -n . (A.15)

Now equation (A.15) has uncorrelated residuals and hence the solution should

converge to unbiased estimates.

The iterative procedure is therefore as follows:

5Ž 1. Solve equation (A.1l) using the normal least squares procedure.

This gives an estimate of A(q) which can be thought of as the

a s of (A.8). Call that estimate A(q).

2. Substitute A(q) into (A.11) to produce an estimate of the

• residuals WK

3. Use WK in (A.12) to make a least squares estimate of 3(q).

4. Calculate Y in (A.14).
K

5. Use the 'I to make a new least squares estimate AK(q).

6. Continue this procedure until

"y-I 2
W no longer decreases with the next iteration.

The question now is:

How does one obtain B(q) of step 3 above?

Assume we have used the least squares process once to find the coefficients a

A-4



Next calculate the y residuals W as
K

N

pNO p p+K K

The results of steps 1 and 2 above gives a y dimenmional vector of the re-

siduals WK.

Calculate the autovariance function of the WK by

r(u) - P u-O,1, ,9-1
c(o) ' '"

where

c(u) T (W Wi- i - ) < e - ) , 0, , . , -

and

Hence the autocovariance function r(u) is defined
7yul i, •) wt, - •

r(u) .. Y1 ' ""-, y00,1,,6.., -1 a]

( i

We now have a vector R, y long.

We want to test this R vector for whiteness of the residuals W.

The standard deviation of a single autocovariance function estimate is

k

A-

1'
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The 95% confidlence limits for a single autoccvariauce sample are

r (0) - 1.96

!. i 1.96

Now supposedly if 95% of the samples r(u) are less than 7=- then

r. I we have 95% confidence that the noise is whicu.

If the r(u) flunks the whiteness test which will happen the first few times

we iterate we must then go back and whiten the residuals WK.

From Equation (A.12) we vant

B(q) W• a nK .

L

Remmbering that E(q) - '. b qm
m,•

qf K+1

and the ny are white random deviates.'

Thus we have a matrix equation of the form Wb - n.

As an example, assume L -2 and K -3. Then we get

"qWOw q2W "o "

q W qlW qZW b n

q0W q nl Wq0 W2  q22 b2  n l

A-6



or

rj W W rb n0 1 2 10 0
W W b nbSw. 2 W3 I

S2 w3 "4 bLz n2
W3 W4 W- 

3
i!,I

Solving Wb - n for the b by using least squares gives'1 ~T T
I wTWb W wn

or

b -(WW) Wyn

b Therefore the new YK previously defined as

IC K

can be written as

.YK b 0YK + blYK+1 + b2YK+2 .+ BLYK+L

A-7



APPENDIX B

EFFECT OF INUKEASING MODEL ORDER IN PRONY'S METHOD

A study of the effect of increasing model order in Prony's method

has been made and the results a.e presented here along with 3ome preliminary

conclusions. in past investigations of Prony's method it has beeu noted

that increasing the modal order above the known order of the waveform

improves Prony's method's ability to estimate accurately the true poles.

Although the accuracy of the pole estimates is improved, a side effect

of this procedure is the problem of distinguishing between true poles
and those poles that simply fit to the noise and have no relation to the

information that is to be extracted from the wavefoim.

In tl-is study we relate the inaccuracy or bias of the parameter

estimates to the amplitude of the residuals of the least-square Prony

procedure. We assume that the inhomogenous solution (defined in Volume

I, Section 2) is uced to find a parameter vector. The term "residuals"
is identical to "equation error". In this appendix, N is the number of

poles modeled and M is the number of samples. When the residuals are

zero the least-squares Prony's method either has reduced to curve-fitting

Prony's method (M-2N) ar is processing a noise-free waveform at the proper

model order. In this case, the pole estimates are quite accurate and are

free of bias. Conversely the bias in Prony's method is directly related

to the magnitude of -i residuals.

Tables B.1 through B.9 display the effect of increasing model order

at three different noise levels, aN is the standard deviation of the

noise. is the average standard deviation of the residuals over ten

Monte Carlo runs. Each table shows the true parameter values in the first

column, the average parameter values over ten Mone Carlo runs, and the
variance of each parameter in the third column. For all nine cases the

time window size is kept constant. Thus, M - 100 and AT - 0.13 seconds.

B- 1
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The three pole pairs shown under the a&verage colimn were obtained by

searching all N poles to find the pairs that were closest to the true
poles in value. In general, of the extra poles not reported here, N-6,

have residues two orders of magnitude below those of the true poles.

From the resutlts of Tables B.1 through B.9, the following observations

can be made:

1. Prony's method seems to guarantee good results if aR < (y
2. aR < seems to occur when 4N > M.

That good results begin at a = a is not surprising. In this case one
would expect that the residuals are beginning to approximate the noise and

that the "modeled" waveform approaches the uncorrupted waveform. But the

, observation that a a 0 N approximately when 4N - M has no obvious explan-

ation. This observation would obviously not hold true if we were to apply

Prony's method to a noise-free waveform. In this case, the residuals

would drop to zero as soon as the model order reached or exceeded the order

of the waveform. We might surmise then that thur occurrence at 4N w M

is attributable to the nature of the uncorrelated noise.

There is no simple explanation for improved accuracy at higher

orders. At least two factors seem to be involved:

1. Increasing the length of the parameter vector (by increasing

the order) is an effective treatment for the dense sampling

problem (which is described in Volume I, Section 3 of this

report. )

2. Making the data matrix more nearly square must reduce the

magnitude of the residuals. Smaller residuals implies smallir

bias in the parameters.

I
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Table 3.1. Model order study M-100, Nwl2, aN. 100,
a -. 1808.

TRUE AVERAGE

*8.ZOOOE-0 -681208E-1 75'i325-03 REAL PARTS
*1. 4 7 0O00 0E-.01. 6 4S.202U8 1 O1 5*821274E-03 OF POLES

-1*88oaoaE-0i -3.3292MB-Oi 2*37137OE-O3
uLeBBOODOE-O± -30292L1-01~ 2.37370E103

9;26 0oCl t0fb; o.
t-9.926 a00001- 01 0.as IMAG. PARTS

2*874000E+00 '2.3410781400 3e2397361-03 OF POLES
-2. 87 4 0 08E 0 0-; ~2 3 410D761';VC07-S27MYIE
4@8350009+00 4.8443111400 6*047Ie6aE-O4

.je.839000E,00 -49443tig*00 6*0474681-0I

2.4000000E+00 101093991+00 79509'193E-02 MAGNITUDES
t. uooooaa+ao 1*1643?6eE+00 1. 3!198TE-02 OF RESIDUgS

1*000000E4'0O 1.1899031+00 8.47'4729E.03
1.0000001.00 to.189903t+ no 8.471.729E-03

U.. IigL LL E- ig 4*077592E-2S RADIAN PHASE
0.1.5079S71-0. to.506953E-02 OF RESIDUES

0: 
'Il 701 981 15: 

88 871:03
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Table B.2. Model order study M-100, N-20, at,-l00,
RU 1 2 4 .

TRUE AVERAGE

-8.2000001-02 -9.0 6995509-02 6o9051.91-05 REAL PARTS
-.. 00 0 E-.0 L.. L~ 1. ý i OF POLES

-L.1.7000E-OL -169717831-01 1.0 8 315 1 E-0 16

-1.8800001-01 -1.9916371-01 16278673E.O04

6,17Ii~- 46-2399979.01 3o57123E-05

-9.2600001-02. -9.2899971-01 3ob§71231E-05 IMAG. PARTS
20 $74 0001 00 2.8832521400 1.01.1044C-0. OF POLES

-4.8350001400 -4. 84025 11400 .1606039E-04

L.000000E+OO '186278591+00 2.0374431-03
L63000089+400 160278991+'00 2*0374431-03 MAGNITUDES

2..~A0Q1±00 £d.IAZ~±ILL~jIA9~PI. OF RESIDUES
L0o90O0DI.00 1.0364671+00 2.199189E-OS
2.6000000E+00 11,000251+00 1.0997881-O3
0.0 0.00010 a .*~t 0 1j0.QjBLEj..Do ...J"jIUL1J

0.-i. -if93 -02 9.620293E-Ut.
0of - 1.2304931-22 9.1202931-0I. RADION PHASE

0.927 AI 0 .2*gs7?80jgJLjg -Q OF RESIDUES
08 go 263211-S 03 Z.0243 03E-03
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ITable B. 3. Model order study M-100, N-36, ~Ne. 1 0 0 '

TRUE AVERAGE2

I -620000102 -. 16173-02 .05~57-a5 REAL PARTS
-L.~7000E01 ~OF POLES

i*4.'7000DE-02. -1.I.85393E-01 1.t172 2 7319- 0
'11.5800009-01 -103429909-01 L.861371'O4

go 260a00 o-011 -902GSI.01-01 2*321#936E-05 IMAG. PARTS
to$7400D0E00 to sv'.essi+oa 9.3016 69E-09 OF POLES

4o.83900014-00 I..8351289440 4h.450031E-05
*b.63I00O1+0U -4o 63G12514'O0 4.I.500361-05

1.O0000I0 9.1i070-01 .32987AK-0
i$0000001+00 9.9310?811'01 1.3250781-03 MAGNITUDES
16aa00a0999-j 1;tx ' OF RESIDUES
10000001.00 1001372b9+00 4..1 9 33E-03
i.0000001400 9.6910633*O01 1.2767391-03

K10.0.0.00CODE+O ..go 61ok, ~1-01 6gTj-i5.g=Ax.

;,Ii 1(E- 0 3 8095335991-01
0.: 96 WE-31.703 8.95335991"01. RADIOI PHASE

0. -.1.11.138 i t? L.O. OF RESIDUES
Ia -to 443819-03 1*~2?~u0
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ritble B.4. Model order study M-100, N-8, a 0.00100,

TRUE AVERAGE

b7~TU W~-~7F~IIET111 75 1T0 ~ REAL PARTS
-I.'.0000*02. *23.!0?1[-D± tsi5Iq3539-03

-Is--IZ-1~T F zl TV0Y K- a I .0 sI e 3fFI '3
i 2.ses0000102 -119949919-0S Z.GIA,85?1-05

*1.8800OO1-01. -1.994993-01 280.t.8571-01

9,12100001-01. 199503011-01 1* 7049 12r-07 MA.PAT
-902600001-01 ~ ~ ~ ~ 6 769019-1 b04512.2-01. XA.PAT

-,.20000-01 6.9530111O0 POLES

4. $5 coo01+00 4*64331,LE+00 3.1698481-06
*4.390009+00' -4*84324L.E+00 3.8898581-06

toDo0 00 0 9 +00l Is.371311[400 3.1.1438611-03 MAGNITUDES
L80000001+00 1.2238201+00 104807201-03 0F RESIDUES

Is000000 an I+D 9a0283F01-02. 4ollOOSOE04-1

-Do- 2,343 F00 9.2300 4.55050-04

0. -2.0228031-02. ?*2355541-03 RADIAN PHASE
0. 22983311901 3*?691i2'L-03 OF RESIDUES

-226193311-01. 3@7514M003O
0. -2. 28411-1 '5978SIE-01
as-i 2.z6SOS+1-02. 2.'i557851900
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Table B.5. Model order study MmlOO, Nwl2, a.OlO
uR.00300. OE010

TRUE AVERAGE 0
* -. 2000102 -8334s7301-02 3s.5198381-05 REAL PARTS

..t.7000L~0L..1.I..8 DWL.0.........3.3. 756L ~ OF0 POLES

90 2 0 00 0 9- 01 g 926322FE-02 L.0542086906
-9 26 a00009- 01 -9. 263227 9-0 1 30051,20&E-06 IMG. PARTS

17 40 00 10 09 f@8~gjjqq t IOF POLES

g,.6390001e+00 4*83004I119+0 *.97?0511.-O7
-498390009+00 -49 S39 043 9+O0 8675?35±l-07

0 a DOD a 0 e0 1@00944LOOD. 9.221i061-05
1 aoaao0009 +o0 16. 005 44 tP0 a 9.2241061-05 MAGNITUDES

.. 1JJAJAtJL...J~fl15.itJ W1409fJ. L-'JL OF RESIDUES
1.000001(0 1.0369311+00 46ie'T0961"05

L43000009+~00 9@2943011-01 4e00140309-06
-St~ip q1+011 dja~'~ :m0

06-.10U10 8. 015 3 231-0'i
0. 1.101'L103 wa153ME05 RADIAN PHASE

SaU.40 A fib I.0&31?.WL OF RESIDUES
0. -. 8?004 e0S163171-05

0. 1.6do 9151-03 .17 10
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Table B.6. Model order study M-1GO, N-20, aN-.001,
R'".001246.

TRUE AVERAGE
!,•,I *.o200o00o-02 -8. 199a551-o2 6.9594,351-09

"-'6200000[*02 as,1998S51-02 6699943§.E-0 REAL PARTS
-. ,4700001-01 -1&.470155-01 1,03.6447-_08 OF POLES
-.. a00' a1-0a. -L .701JS-0. 1.034647E1-0
"0.15800000101 "i,8•03Si1O1 J.L. . E3E'O8• i _,•a•...Q..F, 01-1, sa03SK-01 ... • .12 2 3 E-0

9 .2600001-[02 942600r9g-01 3L5042641-42
-9, 2D00001-0 -902600711-01 3.5042641-01 IMAG. PARTS
.... AJ021MAE 0 I +a PA4023I+00 9 a 53.6jfLj-jf OF POLES
-2;,674000[+00 -2. o740251400 9.53609sZ-03

4@ 6390009+ 00 4,83199414+00 1,3748331-08
-4t6S350001#00 -"•.$3491'+19+00 Is 37 4433M.J..

"s. 0000009+40 90 999'0 aI F.- 01 Z,.130651-,o
L.00000031+00 9,9991199-01 2,.305861-07 MAGNITUDES
... • J..•0.U00 1,00011.400 20091616[*0. OF RESIDUES
1600000010i 1.000 l.t 00 2, 0916M-cr
LO000001+'00 1.0000066÷+0 9. 0947371- 08
1.0000009+00 100000651+'00 9 e0 94? 3?E- 0

0. 4.401O5Z3-01 9. 0343L43.0 RADIAN PHASE
0, -6, 973201-01 2.00,4O721-0 OF R ASIDUES
00 6,97326019-05 2,0041729-0R
as -2o 9039LSE-05 20259596[-0?

B-8



Table B.7. Model order study M-100, N-8, a Nm.0100
~ .0394.
Rm

TRUE AVERAGE 0 2

-S.ZOOOOOE-02 "-.62.694LE.01 49313874E-03 RA AT

-1.'i7000CE-01. -4* 3310±I91-0± LeO.231149-03 OF POLES

-i.4?G0001-0± -4* 93100E!-01 2..6332L*'E-03
-t.880000!-01 .'2603MF1-61 465L8?06-05
-1.880000!-gi -2.1 0351.SE-U 1 4*51 ST &E-05

-902600001-01 01 ofM&4G. PARTS

-2.8749001+00 -2. ~44I.STSE00 662!52100E-016 O-OE

405390001+00 I4e82096F9+00- L*6992293-0.o
=4.83900CE*OO -4e82u9&rFlo00 L.199293E-O'.

1.000000!400 8.254603E-01 Ze 930662E-02
ivI0000001400 8.254603H-01 2.9306821-02 MAGNITUDES
.,~is 0 00E+00 i 1.16 0 6814 00 3e 9 83'07E- 03 OF RESIDUES
I1.r 0oC000T T001a0 1f1540b8140c 3.5683071-03
16000000E+00 1.1125011+00 4.64.33699-05
160000900E+00 1.112501L140 4e.64336§E-05

0.F-W 5 Y F.- 1-5 6 5 963411-2 5
0.2.9919331-15 66.59 63 4 LEuumZa RADIAN PHASE
0.52..620531-01 Zo72968881-03 OF RESIDUES

0. -1Is6 250 33 1-01 207296881-03
0. -1.0751.31-o± 9*08233?E-04

0. 1jsjj7514SE- 9.0823371-0:.
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Tqble B.8. Model order study M-100, N-12, 01000OO
S-0295.N

YiTRUE AVERAGE ~ 2

*8.2000002u2353IifEmO1 2.5968-a
'-G* 200000E-02 -2: 3531&1.E-I' 2*65926SE-03 REAL PARTS
-10.00E-1 2I.Ot&IO 5551Ea OF POLES
-t*470000E-Di -2. t.7I.B5E-01 5.5LSS±TE-3.
-1*86000CE-0i -1*uj93455i19-01 iO44E
-loSISOOOOE-0i -1. 934561.E-O± L*094043E-O5 *

9*26MC0E-01 96 406673F.-O1 3e593I58E-C4 IMAG. PARTS
-902600009-Ot -96 408873E-01 3*593L58E-0: OF POLES

2oS7'.OOOE+0O 2,59969$E+00 i*68796&E-04

I.83-503E0014O I,4234Z35E4'OO& 1.22613E-04
-44 93900H+00. -'e.542353SE+OO JL12LE0

1 000000E+00 Is ...06601+0 .-O19705038E-02 MAGNITUDE
i:000000!o00. 1.1626053E+0:.":1': i,70-803SE-02 OF RESIDUES

L*OOOOOOE+00 Is21~EO '2*967772E'-03
i03OUOOOE+OG 1m21075E4OO 2#967772E-03
i*0ooo0aE+oo 9*7593tiE-O1 'e.15653E-014
16000000E+00 9.7~53LE-01 4*LSO693E-O0g

Do LFU64128 -03 7.62i512E-Bf RADIAN PHASE
2a -27 L26*5 .S- 03 7*626122E.-03 OF RESIDUES

0.7e30809SE-02 39?16332E.03
-7o~0 1asa sE--U2 3 , 75 5a3ZE-03f

IeD25553E-01 89L28753E-Ote
0. -1. 025580E-0S. 8oL28753E-0I.
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Table B.9. Model order study M-100, N-20, a -0100,

N

!ý0I AVERAGE2
-80200O0O2-O2 -B.?069L4.E-O2 6093~b2SE-07
-80ZO00cOE-o2 -8.aaB9L;.E-02 6093662$E-07 REAL PARTS

-BE-DiOF POLES
-Le.o000DE-al. m1.~rZ335OE-0 1@036735E-OS
-L8680000E-O2. -is88399LE-01 L9t334SLE-O6

9026000OE-01 96260993E-OI 3951Z,693E-07
-9s 26000OE-01 "'962611933E-D 3*5i4693E'O? IMAG. PARTS
-2M4.09+a0 2-&.= g it3&71F. n7. OF POLES

-2*8740001E4OO -2a 97'313JEtOd 9*61,347dE-07
I..8315OOE+00 496834993E+00 i*3541OI.E-OB

1.OOUO9*U 999817 LE-O±. 28.±2329SE-OS
±.OoOGgoo 9g~g$a?LEO .130E-OSa ' MAGNITUDE

1,jUGOOCOO .0011.4*OU .G9578~-O5 OF RESIDUES
10000036E+08 Is 001344E+00 2*099578E-05
16300OOOOO!'O 1,0OU75TE+0O 9.2LL95SE-05

1* 008000E+00 1600075?E4OO 9e21199SE-05

0. 03. O9473LE-04 2*238'49SE-05
0. 30gL.3i~-4 2.~j%81CLL
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APPENDIX C

THE ADAPTIVE METHOD FOR RESONANCE ESTMION

The adaptive method results from the generalized scheme of Volume 16
Section 2, under the following assumptions:

1. Qs 0 1 and $ - 0.

2. F * , ± - l,...n and Fo * 1.
i Z-Zi0

3. The model input is a unit sample at k - 0 (discrete impulse).

The unique feature of the method is that the filter poles, yi, may be

adjusted to any value in the Z-plane, An adaptive technique fnr' adjusting
the filters consists of first initializing the filters to arbitrary values

in the Z-plane and repeating the gollow4ng steps:

1. Find an estimate of the process transfer function using

the current filters in the model.

2. Set each filter pole to one pole of the estimated

transfer function.

This procedure is repeated until ai approach zero. The poles of the

process can be estimated during the course of iteratton by
^ zi

A

removing the need for finding the roots of a polynomial. The filter poles
are updated to zi on each iteration. When the ai approach zero the pole

updating ceasus and the method converges. At each iteration, the ai are

found using any of the techniques for finding a parameter vector described
in Volume 1, Section 2. Perhaps the simplest method is to choose the

parameter vector as the weakest eigenvector nf f*Q. At conver[ ince the
S-plane poles, a can be obtained from the fIll.r poles by

sisI n zi

T

and the A, -i"

C-I
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The adaptive filtering method seems to be a very useful technique

I because it uses what seems to be optimal filters, band pass filters, for

estimating pole locations. In addition it presents a measure of the error
I and iteratively adapts the filters until the error is at the level where

r it is desired.

As an example of the use of the adaptive filtering method consider

the data shown in Figure C.l. These data were numerically generated by
using the time domain computer code TWTD [C.1]. The structure modeled

I by TwTD was a thin cylindrical scatterer. The signal was contaminated

with noise to give a 15 dB signal-to-noise ratio. Figure C.2 shows the

resulting poles from five Monte Carlo trials.

The following statements can be made about the adaptive method after

studying it.

I ~The adaptive method is a new method which, in many cases, prc"' Ides
excellent pole estimaues under difficult conditions. The method is

unique in that a siolution to a polynomial is not required to find estimates

of the process p~les. the method, in effect, "swallows" the polynomial

solver in its own iterative pole-searching scheme.

Attempts to analyze waveforms consisting of highly damped exponential

L ~components, such as the transie,,t responses of a sphere, have not been

successful. The adaptive method does not converge for wavdeforms which

display double pole characteristics, that is, waveforms with components

of the form t exp(st). Slight modifications to the adaptive method might

allow the analysis of such waveforms.

C- 2
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I0.2
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Figure C.I. Noise-contaminated offset-driven TWTD
wavefo~m, SNR-u 15 dE. The uncontam-
inated waveform is plotted under the

noisy •,aveform for comparison.
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True: .220 + J 6.800
Average: -. 122 + S 6.841

Radius: .184

6

True: -. 188 + J 4.835 JWL

Average: -. 124 + j 4.77"- Ci

Radius: .164i:1 4

True: - .147+ j 2.874

Average: - .085 + J 2.9"

Radius: .082 2

True: -. 082 + J .926
Average: -. 087 + j .908

Radius: .016

0
II

-2 0
aL
C71

Figure C.2. Pole estimates obtained

with the adaptive method.
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APPENDIX D

THE PENCIL-OF-FUNCTIOS METHOD

The pencil-of-functions method results from the generalized model

described in Volume 1, Section 2 with the following assumptions:

1. 00 " 1 and 0 - O.

2. F = F (s) - (1 (cascaded continuous integrators).

This method is not very easy to implement on a digital computer since the

continuous-time integrators cannot be implemented exactly by any algorithm.

When approximate iutegrators are uascaded, as they are in the pencil-of-

functions method, large errors can be quickly accomulated and the intended

result after a number of integrations destroyed.

This difficulty can be resolved by cascading discrete integrators to

obtain filters with pulse transfer functions given by:

- EiZ Z zi-(~

which can be implemented on a digital computer with no error by using

difference equations. The variable Z is defined as

1Z- I
z

and z is the z-transform variable.

When discrete integrators are used the discrete pencil-of-functions

method results. The poles of the pulse transfer function of the process

or waveform may be estimated as

zi l-Zi

D-1
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where Z is the ith zero of

zn Z +.+ (.1)

In the original pencil-of-functions method the a were found by using

Jain's method for constructing the parameter vector which is described in

Volume 1, Section 2. With Jain's method

iail:t th
where A4i, in this case, is the clement at the i row and j column of

adj 0f*. Other methods can be used to estimate the parameter vector.

The S-plane estimates of the poles, a,, are related to the zeros of

(D.1) by

One difficulty with the pencil-of-functions method is related to

the atterutation of the higher frequency modes of the process output by

the repeated integrations applied to the nutput waveform. It caa be

-,erified that an integrator is simply a first order filter whose Laplace

transfer function has a pole at the origin in the S-plane. Such a filter

tends to suppress the higher frequencies present at its input. The

higher frequency suppression phenomenon is illustrated in Figure D.l.
Normally, when an exponential function is integrated repeatedly,

components of power of time exist in the higher integral@ as well as the

original exponential function components. In Figure D.4 the components of

powerm of time have been subtracted from the integrated waveforms in

order to make the attenuation of the higher modes wore evident. The
first waveform is a hypothetical waveform provided for analysis. The

waveforms that follow are the integrals of increasing order of the first

waveform and display the increasing dominance of the fundamental mode or

mode of lowest frequency. Further integrations yield nearly identical
waveforms. The integrated waveforms tend to become linearly dependent

D-2



waveforms. The integrated waveform. tend to become linearly dependent at

higher model orders. The matrix M*f then tend@ to singularity and the

method becomes unstable. The suppression phenomenon occurs in both the

discrete and continuous methods. In fact, even for very modest model

orders, the method can become numierically ill-conditioned to a degree that

I ~special care must be taken to assure accurate inversion of fl*n.
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APPENDIX E

METHOD OF REDUNDANT AVERAGING

The redundant averaging schome is a preprocessing scheme that attempts
to combine redundant data (that is, more data than are necessary to determine

the parameters) in a way that avoids the bias introduced by usins a least-

squares scheme to combine redundant data. The method attempts to transform

a raw waveform of more than 2N samples where N is the model order into a

preprocessed waveform of exactly 2N samples by averaging within the waveform.

The averaging can be doaie so that the expectations of the poles of the pro-

processed waveform, are equiialent to the expectations of the poles of the

raw waveform provided the additive noise on the raw waveform is zero mean

and uncorrelated between sucessive samples. The preprocessed waveform may

then be processed with cuive-fitting Prony's method to avoid the bias of the

least-squares procedure.

The most general description of the redundant averaging scheme can

be stated simply as

. I k-O,1,...,2N-l

th
where N is the model order, X denotes the k sample of the preprocessed

kth
waveform, and yk denotes the kI sample of the raw waveform. In order to
limit this description to the essential features of the redundant averaging

scheme, NA, the number of averages, an" N., the decimation epoch, are not

explicitly defined here. These parameters are choosen as desired but usually

in a way that would produce a desirable preprocessing mode in some sense.

For instance, the value for the decimation epoch mijht be chosen on the

basis of the maximum frequency, wm, present in the raw waveform (if this

information is available) and the number of average, might be chosen so

that every sample in the raw waveform is used once the value of the
decimation epoch is set. Hence the sampling interval, At, for the

preprocessed waveform could be obPained as

E-1



At - N A t
a raw

where N Integer Part

The numbbr of averages, NA, can be computed by

NA s M - N (2N-1)

where M is the number of sample. in the raw waveform and N is the order
desired. It should be noted that the above method for determining NA and

N8 is not the only possible technique.

The redundant-averaging ;rocedure in effectively two operation.:

1. Apply a low-pass moving-average filter, A(z), to the raw waveform.

2. Decimste the filtered waveform with decimation epoch Nos

The tranafer function of the moving-average filter is:
;.+•N ýA. NA-2 sA.1A.! (x) - , + a + ... + ,+1 0 ,.- 1-

The numerator of A(s) can be factored into

NA31 (s-s i).

The zeros, si, of the numerator of A(s) have unit: magnicudes and arguments,

az i " NA

for i w l, so@, N A* It is clear that the first fact~or cancels with the

denominaoro giving

NA
A(z) j : c t (z-: i c
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Figure E-1. Z-plane plot of zeros of
preprocessing filter for NA - 16
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6.0
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N

Ix x NOISE FREEV N
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0.0.
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V
Figure E-2

a) Noise free test signal from 6 poles

6.0• - RECONSTRUCTED

x NOISE CONTAMINATED

III

0.0-

' x

Figure E-2

b) Noise contaminated signal and reconstructed signal using
the method of redundant averaging with parameters M-400,
NS-16, NA 160.
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Table E.1 True poles and results of five Monte Carlo runs for the
redundant averaging example shown in Figure E.l.

REAL PARTS OF POLES

TRUE MONTE CARLO RUNS•i, ' PLESAVER. % DEV.
POLES

1 2 3 4 5

, -. 082 -. 097 -. 127 -. 122 -. 137 -. 050 -. 107 .033 30

-. 147 -. 198 -. 157 -. 239 -. 162 -. 177 -. 187 .086 27

-1.83 -. 129 -. 103 -. 227 -. 562 -. 332 -. 271 .185 44

" IGZNARY PARTS OF POLES
TRUE MONTE CARLO RUNS AVU - DiV.

POLES
1 2 3 4 5

.926 .957 .904 .884 .942 .936 .925 .030 -.1

2.874 2.950 2.913 2.874 2.889 2.882 2.902 .031 1

4.835 4.721 4.899 5.006 5.065 4.803 4.899 .141 1.3
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AWz then has NA zeros which are evenly spaced around the unit circle but

the zero at zol is canceled. Since there is never a zero at z-1, the

moving-average filter can be viewed as a type of low-pass filter. A

z-plane plot of the zeros is shown in Figure E.l.

As an example of the application of this method consider the noise-

free waveform shown in Figure E.2a. This waveform consists of 400 data

points representing a sixth order exponential function genierated with the

poles listed in Table E.l. This data was then corrupted by adding whiteI

noise with a standard deviation, a, of 0.5. Figure E.2b shows the noise

hi contaminated signal. This signal ham a signal to noise ratio of 15.6 dB

where the signal to noise ratio is defined as

Rk
S/N -20 log 2a

* where Rpak is the peak amplitude of the transient signal. Five Monte

Carlo trials were run on this data using the redundant averaging method.

The model order was selected to be 8 (two more than the known order) and

N and N were chosen to be 16 and 160 respectively. Figure 3.2b shows
S A

the reconstructed waveform obtained from one of the Monte Carlo trials.

Note how good the fit is considering the signal to noise ratio warn 15.6 dB.

Table E.1 lists the results of the five trials and shows tO~e pole averages,

standard deviations and per cent deviations. It should also be noted that

the signal to noise ratio compared to each pole residue is only 6 dBl.

Hence from poles with a 6 dB information content we were able to recover

them very accurately.

The redundant averaging scheme has two difficulties or limitations

that can cause the method to be less effective:

1. If the sampling rate in the preprocessed waveform is

sufficiently low, the higher frequency poles can be

folded, perhaps several times, Abn'ut the Nyquist

frequency.
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2. The method can null modes in the preprocessed waveform

that exists in the raw waveform.

The frequency folding phenomenon inLroduces an ambiguity in that it

is not known how many times a particular pole has been folded about the

Nyquist frequeucy. Hence, Ns possible poles are introduced for each

extracted pole by the redundant averaging scheme where

N r (AT) preprocessed
a (AT) raw

Of course, if the highest frequency mode of the waveform is known to be

lower in frequency than the preprocessed waveform's Nyquist frequency, the

ambiguity is resolved but, in general, this will not be the case.

The mode nul•ing can occur if the averaging parameters are such that

the zeros of the resulting low pass filter cancel poles of the signal

itself. That is, if we define the preprocessed waveform P(z) as

IP(z) - A(z) D(z)

1~N (z)
resulting from the averaging process A(z) operating on the signal D(z),

then if A(z) and D(z) each have terms in common they can tend to cancel

each other.
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A.PPENDIX F

COLUMN PRONY'S METHOD

In this method the z-plane estimates of the poles are the roots of

the polynomial

0.- (zN) (zN) 2  (zN)Nall "0 + a 1( + a2 (z + ""+ Yz 0

The ai are determined from the system,Ii -L "YO YN " " YN2-N Q 0 YN2

Y3. YN+I ".. YN2-N+I 'N2+

where aN is assumed to be one and (y0, yl, ...' YN2+N-l} denotes the

sequeace fnr the waveform containing N2+N samples. It shoald also be

noted that the. polynomial has N2 roots on~ly N of which are telatei to

estimates of the true constituent poles of the waveform.

e2

Column Prony's method offers a means of combining N2+N data points

compared to uhe 2N data points of the standard Prony's method. The

column Prony's method can either be used in the least-squares version or

the curve-fitting version. If the curve-fitting version of column Prony's
method is used, the resulting parameter estimates are unbiased,
Unfortunately the method yields N2 pole estimates only N of which are the

true poles. It appears then that column Prony's method leads to the same

problem that increasing the model order led to in the standard Prony's

method: an ambiguity in the identity of the true poles. Moreover, this

method has an additional problem: the matrix can become nearly singular

F-1
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I even if the model order is lower than or equal to true order. This

phenomenon is similar to the singularity of the standard Prony's method

when the model order equals the waveform order and the highest frequency

is equal or nearly equal to the Nyquist frequency.

II

II

II
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APPENDIX G

EVAN'S AND FISCHL'S METHOD

In Evan's and Fiuchl's method [G.1] they define a "true error"
sequence (a,, k-0, ,... H -1} as the error between the given wavefrers and
the "fitted" waveform. They then proceed to define the "equation error"

sequence {dk, k-0, ... , M-l}. They further proceed to define a relation

between the equation error and the true error:

a -WdSt

where
T.- •[01. L-J. -

R[ a
dd0 d1 *. M-)(d 0 [ do d. . _ .3 T ,

T -and W- A[AA]

where
a 0 "

I 1 0 ... .00

C1 a

A- 0 *** . .

0
NN

L0 0 "...

M is the number of samples, N is the number of poles, aN=l, and the a

are the coefficient. of Prony's difference equation defined in Section 2,

Volume I.
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By using this relation between the two errors they describe two iterative

procedures aimed at minimizing the "true" error criterion:

H-]. 2
X k

The first procedure uses

a [tVG)- -l

whe7.'e T

T1 at! i GN

V 3GT W(!.') W(a.'))

T

I u-y I

YN-1 01

i is the iteration number, &no y. denotes the ithsample of the response

The second procedure uses:

a" - G [UI1 U a

where T T
U - + G W(a W(-

L(a) t 2(a) ... LN(a)]:1 - -

a k () _kw<) 
dWa
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It can be shown that

W~a

a ¶4
-- w- • ,.",.A~) Aa

--J

+ Aa [T I _4~ A0 AaT A(!)]

and M((/a N-k) A(a)] is simply the matrix A(a) with ones replacing the aN-k
with all other elements zero.

The following observations can be made about the methodi

1. It produces optimal pole estimates in the sense that it
minimizes "true error". This means that the mean-square error between the

given waveform and the fitted waveform is minimized. These optimal pole
estimates are obtained only in the second iteration phase.

2. .._e matrix ATA must be inverted on each iteration of both the
T

first and second procedures. When the wav,. m has over 100 samples, A A

becomes very large, and hence, 4xpensive .u invert. Consequently, the

method is prohibitively expensive when the waveform has over 100 samples.
This method has yet to be evaluated by tests on noisy data. Nothing is

preseutly known about its convergence characteristics of its tolerance of

noise.

The following example illustrates the optimal estimates.
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N *1, M 3

yn [2 1 2(wavef orm to be approximated)

2 *-

Initial parameters: aO 1, .--l C . Theme are the optimal parameters,

therefore the method should converge immediately.

,0 1Lo

S[2/3 1/3

1/3 2/33
d!.a ./: */

1'2

-1 -2/3 -1/3
L2/3 1/3 1/3 -/3

1/3 2/3.]

L. j1/3 2/3

.................



L1 0 0*

•_ +

0 1 1/23 -1/311 F-i1
S0 [1/3 2/3- 0

* [-i a] 0 ] [12 /3 1 /31
+ ao-1i 0i ]1 J[1/3 2/3]

* '

0 01

wv. I/3 1/3

I'I
I 3 /3

V *1/3 2/31

2

11
* (5/3 5/3] [5/3 5/3] 1

Therefore the updated value of 0 is equivalent to its old value, hencu the

method has converged at the optimal parameters for the second iteration

phase.
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APPENDIX H

CONSTRAINED PRONY's METHOD

H.l Uses of a Constrained Prony Method

Many times, in the application of the Prony algorithm some of the

poles are known a priori. It would be very useful if the Prony algorithm

could be constrained in such a manner that the knowledge of the known

poles is used in extracting the unknown poles. The known poles could be

poles of the driving function which are known from knowledge of the Laplace

rl transform of the driving function, system poles which are known from previous

Prony analysis or other techniques, or poles introduced to model the noise.

It is well known that for certain data sets Prony's algorithm has

sows difficulty Ln extracting the true poles that are contained in the

data. This problbm is generally related to the noise in the data but will

not be discussed here. Any method by which the accuracy of the true poles

can be increased will be very useful.

Logic would tell one that making use of known information should

increase the accura.y of a calculatLon. Hence, if use is made of known

poles in the data it would seem reasonable to assume that some of the

instability in Prony's method would be alleviated. The proof of the
validity of this statement rests on the actual implementation of the

constrained Prony algorithm and the results compared for the same data

analyzed by the unconstrained method.

In addition to aiding in increasing the accuracy of the true poles

it might be possible to introduce random poles which will model the noise.

In that manner, the poles that are kno%m a priori are not the poles which

we seek. The difficulty with this, if it should work, is that we need to

know the rank of the system so that we can introduce tie proper number of

noise poles.
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Another asset of having a contrained Prony's method is that it can be

used to aid in deconvolution. The following discussion follows directly

from work performed in Reference [4.2].

Assume that a system is excited by a driving function which can be

represented in the form

M 8 t
G(t) " a u(t). (H.l)

•7"I It io presumed here that the driving function poles sa and the associated

residues gj are knowm. These can be determined analytically if the ana-

lytical form of the driver is known or can be determined from a Prony's

method fit to measurement data of t.he driving function.

Now assume that -the response of the system to the driving function

0(t) is

M~+N a tR (t) =•iri L a U(t) (H. 2)

and that the impulse response of the system is 1;
H(t) h. (H.3)

H tnce, there are N system poles and residues and M poles in the driving

function. Of course, the response function R(t) can be written as the con-

volution of the driving function G(t) with the impulse response H(t). That

in,

I(t) = H(t)*G(t) , (4)

where * denotes convolution.
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What is usually desired is to obtain the N system poles and residues
of (11.3). This must be done by deconvolution of the driving function
(HEl) from (H.2). If the ri and sa are known, the M+N values of s9 contain
the M values sJ* The g and the a are known, then the N values of hk and

kkskcan be determined analytically.

It can be shown that the response function can be written in terms of

the driving function and the impulse response as

H N hk at N kt

R~)u~(ja k-J. j k k-i J-1 k

Hence, the response function residues can be defined as

N hk
-k , for i- ,H (H.6a)ki sj'k

P ri -hk for i - M+l, N+H (H.6b)

From (H.6b) the residues of the impulse response are written as

ri k l ,N
i , (H.7)k M

/ _ _ i =M+k
•. ~J-1i s'k

Thus the res"ises or amplitudes of the impulse response can be obtained from

the known va. is rip , sji 8k. Of course, since the H values of s are
known and the M+N values of ai are presumed to contain the M values of si,

then the N values of *k can be determined by inspection.
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Prony's method, however, will not necessarily give the true values
of the driving function poles in the extracted poles of the response

function. Hence a constrained Prony's method is required so that analyti-

cal dec-involution of (H.7) cau be obtained.

Work performed so far implements Method 1 which is described below.

It was found that this method works perfectly as long as no noise is

present in the signal. As soon as noise is introduced in the signal and

a least-squares method is used the matrix (H.17a) is corrupted with noise

which through the least-squares process also corrupts the constrained

parameter. Experiments have confirmed this observation. This suggests

that the constraining Method 1 may work well in noisy data if the curve-

fitting Prony's method is used. This has not been tested as yet.

Method 2, forcing the polynomial root solver to find certain roots,

has also not been tested. This is because if the coefficients are all

corrupted by noise through the least-squares procedure then subtracting

any given poles out of the polynomial will force the remaining poles to

carry the burden of all the noise.

H.2 Method 1

In the implementation of Prony's method, an Nth order polynomial is

solved for its roots. The order of the polynomial, N, is the number of

poles being sought in the transient data. If the coefficients of the

polynomial are denoted as a then the polynomial can be expressed as per
Reference H.1 as

1 2 N+0 Z +az +." + - 0 (H.8)
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where aN is usually set equal to unity. The N roots, Zi, are defined as

Zi = (H.9)

with si being the poles sought, and At being the time step size usted in the

analysis.

If the value of one or more of the poles is known - tha" is, we know

some of the - then the Z can be substituted into (H.B). For example,

if s or Z is known, then (H.B) can be written as

•0+ lZi + 02Zi2 + "'+ 01 ZiN "0 (Z
0 11 21N i (HIO)

The N+1 polynomial coefficients a are solved for in Pronyts method by

solution of the difference equation

N-1
p , I k-Ol,...,y-l , y-M-N . (H i)

PO p p+K NK

The I andIN+K are the samples of the transient signal being analyzed and

M is the total number of samples being used. The value of M must be at least

equal to 2N to give N sets of equations in the N unknowns p. However, if

the value of a pole is known, then one of the N equations can be equation

H.10 and N-1 equations of the form of H-11 can be written.

If L poles are known a priori, the L equations of the form of (1.10)

can be written as

SZ-- =N Z 1, 2, L

p Z£p " (H.12)

H1-5
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and Y-M-N-L equations can be writ-ten in the form of (H.l1)

N-i
0 Ip+K " - 1K+N , k-0,1,...,y-1 , -M-N-L (H.13)

Hence there are still y-M-N total equations to solve for the N values of aP
however the system is constrained by the knowledge of the location of L poles.
As is usually done in Prony's method, if M-2N then the set of equations is
inverted and solved. If M>2N then a pseudo-inverse procedure is used.

Using the matrix notation of Reference H.1, if M-2N and L poles are known,
then we sulve the equation

AB - C 
(H.14)

where A is a square matrix defined as
A

21N-i

1 • Z2 . . N -

ZL _N-1

A L LL (H.15a)

0 I1 132 N-1 A
I1 12I .,I

IN-.-L IN-L IN-L,1 o 2N-L-2

lH-
II
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and B and C are vectors defined as

N
B • * 4..

(U. 15b) (H.15b)

,N'N-1 & L. •

IN*1

V. If M>2N and L poles are known, then the solution takes on a pseudo-inverse A
or least-squares form as

A TAB ATc (H.16)

T
Where A is the transpose of the matrix A and A is now a rectangu!ar matrix

of the form

2 N-ii 1z1 z .. z
2N-i

21 2

2 _N-1 (.17a)SzL zL. zL
A L L

10 I1 12 .N-1

S12 I.

M-N-1-L I-N-L "'' -L-2
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0\

Q0 Z2

B 2 (H.17b) (H.17c)

1.C N- I
IiL

Consider the simple example of a two pole system

0lt st

cAl 82

f(t) - 2a + 3,

where s- 0 and sa -4. Assume that sa is known, thus giving Z1 - 1.0.
Also, let f(t) be sampled at At -0.2 seconds, giving a data set as

t f(t)

0 10-5

0.2 I1 - 3.3480

0.4 12 a 2.6057

0.6 13 - 2. 2722

0.8 14 - 2.1223f4
Using the constrained Prony's method in the square system form of Equation

(H.14) and (H.15) yields

1H-8



or

L5  3.4J 21 Z.o7

The solution of this set of equations gives a,* 1.4493 and a 0.4493 so

that the polynomial can be written as

z2 1.4493 Z +0.4493 0

The root. of this polynomial are Z 1.0 and Z 0.*4493, giving poles of

*l - 0.0 and a2 0 4.0003. The error in ais due to truncation error. Note
that the constrained pole was returned exactly.

11.3 ethod2

Another approach which can be used 'to constrain Prony's method to use

information about known pole. is the modification of the polynomial root

finding routine MULLER. Once the unconstrained Prony's method calculates

the coefficients of the polynomial (11.8) and if some of the roots of the

polynomial are known a priori, then the locations of those roots can be

* passed to MULLER and it will not have to search for those roots. Since the

root finding routine is very time consuming, the knowledge of the location

of any of the roots will presumably save computation time.

* A possible flaw with this approach is that MULLER is forced to pre-

suing roots of the polynomial when those exact roots may not be contained in

the polynomial. That is, if the polynomial has not been constrained to

contain the known roots, as per Section 11.2, then the known roots will

H1-9



not necessarily be contained in it. Forcing an unconstrained polynomial

to have certain roots could grossly perturb the location of the other roots

being sought.

H.4 Method 3

The obvious solution to the flaw presented in Section 11.3 is to use

both the methods of H1.2 and H1.3 simultaneously. That in, the polynomial

~ I is constrained to contain the known poles as outlined in Section 11.2. Then
the polynomial root finding routine MULLER can be modified to extract the

known roots from the polynomial before it begins its search for the unknown

roots.

It is felt that this approach will give the best accuracy and will

speed up the calculations since the order of the polynomial is effectivelyI, ~reduced.

[~H- 10
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iI
APPENDIX I

REVERSING THE WAVEFORM IN TDM TO ELIMINATE
EXTRANEOUS RESONANCES

Reversing the waveform in time depends on the statistical properties
I of the noise which do not change when the waveform is reversed. The poles

that result from the noise, therefore, are not altered by reversal in time
while the true poles are negated or flipped through the origin.

|•'i 1 If the noise level is high the noise poles only approximately remain

the same under time reversal and the true poles only approximately reflect
through the origin. If time reversal is attempted for curve-fitting Prony's

method it is found that all poles flip precý.sely. Therefore, this method
S p | is not effcctive for curve-fitting Prony's method.

• • (Curve-fitting Prony's method uses the solution to the inhomogeneous system
p rq, in the notation of Volume 1, where Q is a square matrix.)

The waveform of Figure 1.1 was uAed in a numerical example of the time-
reversal method. Least-squares Prony's method was applied to the waveform.

Estimates at thQ S-Plane poles were found using the inhomogeneous solution

which is defined in Volume 1, Section 2 as

_TQQ -1-_T
- Qq.

The waveform consists of 100 samples and was corrupted with uncorrelated,

Gaussian-distributed noise with a standard deviation of 0.1. Figure 1.2
displays the poles obtained from the forward and reversed waveforms. The
dimensions of the (NXn)-dimensional matrix Q in this example are M-76

and r.=24. The estimates of the true poles are quite accurate. Figure 1.3
displays the poles obtained for the same waveform but different matrix

dimensions. The matrix dimensions are M-60 and n-40. In this case, the
uxtraneous poles do not all remain in the left-half plane which is
attributed to using an overly square matrix.

I-I
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If the matrix is too "thin", of M/n >>I, the estimates of the true

poles becomne inaccurate. If the matrix is too "fat", or M/n•• 1, the ..

extranoio.s poles do not all remain in the left-half plane. The matrix

shape where H/n a 3 appears to be the beat shape for good estimates and

keeping the extraneons poles in the left-half plans.
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F IHX noisy data

I' exponential fit with
ill N-25, M-76

I I

FiurI-1. Waveform, used in the numerical example.
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Figure 1-3 Effect of an overly-square data matrix.
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Therefore, it appears that if we choose M/n a 3, then time

reversal can be used to distinguish between the true poles and the

extraneous poles in relatively high noise levels.

The above two examples show that there is a trend for the

noise poles in the least-squares Prony's method to occupy a higher

frequency portion of the S-plane and to be highly damped. This trend
was studied by letting the least-squares Prony's method operate on a
waveform consisting of only Gaussian-distributed uncorrelated noise -

no signal. The poles resulting from this example are highly damped and
evenly distributed in the z-plane approximately around a circle within

the unit circle.

This behavior can be explained by the fact that the polynomial
I coefficients, except aN which is set to one, all tend to zero for the

least-squares method operating on uncorrelated noise. The polynomial
then tends toward zN a e where e tends to zero. The roots of tizis

polynomial, zi, have magnitudes

Izil - /N

and arguments

.arg c + 2-ffi-i)
arg zi N

for i - 1, ... , N.

It then follows that the poles should be highly damped, since

Izjl + 0 if lej + 0, and that the poles are evenly distributed about the

z-plane. However, for curve-fitting Prony's method the ai, i - 0, ... ,

N-I do not tenl to zero and indeed this phenomenon is not observed in
tests using cuive-fitting Prony's method on all noise.
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This behavi.or oi the noise poles in least-squares Prony seems to

remain approximately the same even if the waveform. is not entirely noise.

The trend that is seen is that the noise pole. occupy the higher frequencies,

are highly damped and evenly distributed between the higher frequencies;

while the true poles are approximately at their uncorrupted location.

and occupy the lower frequencies. That is, it appears as though the noise

poles are "czowded" away from the lower frequencies or, perhaps more

accurately, the lower frequency noise poles become lower frequency signal

poles when the waveform is no longer entirely noise.
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